About
Wildfire ignition probability data provides spatially explicit estimates of the likelihood that a wildfire will start in a given location. The resulting datasets, specific to the Western and Southeastern U.S. regions, offer geospatial estimates of wildfire ignition probabilities, distinguishing between human-caused and natural (lightning) ignitions, as well as providing combined probabilities for both. The authors employ Random Forest machine learning, customized for probabilistic predictions, to model ignition likelihood based on spatial trends in observed fire occurrences, topographic features, climatic factors, vegetation characteristics, and human development patterns. The resulting datasets are scaled to recent observed ignition rates (e.g. 2006-2020 fire occurrence database) and have a spatial resolution of 120 meters. These datasets are a valuable resource for wildfire risk assessments (QWRA), risk mitigation planning, and decision support in land management, policy development, and other fire-related contexts.
Selected Data Tiles:
Download
Wildfire Ignition Probability
Probability of naturally caused wildfire ignitions across the southeastern United States.
Direct Access
Get hands-on access to this dataset using interactive notebooks. Choose between the Google Colab notebook for quick exploration in your browser or access the hosted Jupyter Notebooks via Binder or GitHub for more advanced workflows.
Direct access to the Google Collab notebook
Open and explore instantly
Click the button to the left to launch an interactive notebook directly in your browser. This pre-configured Colab notebook provides a quick and easy way to explore, visualize, and analyze the data—no setup required.
GitHub hosted Jupyter Notebooks
Flexible access for advanced workflows
Access the full collection of Jupyter Notebooks hosted on GitHub. These notebooks can be used on your local machine or via cloud platforms like Binder or Google Colaboratory, providing flexibility for more advanced customizations.